User Manual

NEUTRON

Paraphonic Analog and Semi-Modular Synthesizer with Dual 3340 VCOs, Multi-Mode VCF, 2 ADSRs, BBD Delay and Overdrive Circuit in a Eurorack Format

(EN

EN) Table of Contents

Thank you2
Important Safety Instructions3
Legal Disclaimer3
Limited warranty3
About the Neutron4
1. Introduction5
2. Features5
3. Controls 6
4. Overview 10
5. User Configurable Options & Features
6. Eurorack Installation18
7. Software Update & Calibration19
8. Patch Bay21
9. Neutron Set-up Examples22
10. Preset Patches24
11. Troubleshooting24
12. Specifications25
13. Appendix A27
15. Appendix B Neutron App29
16. Glossary30

Thank you

Thank you very much for expressing your confidence in Behringer by purchasing the Neutron analog synthesizer - with 2 x 3340 VCOs, analog bucket brigade delay (BBD), soft-clipping overdrive circuit, 5 shape morphing LFO, 12 dB multi-mode 2 pole filter, paraphonic mode, semi-modular and Eurorack format

Important Safety Instructions

CAUTION RIC SHOCK NOT OPEN! ENTION UTION ELECTROCU' AS OUVRIR !

Terminals marked with this symbol carry electrical current of sufficient magnitude to constitute risk of electric shock.

Use only high-guality professional speaker cables with 1/4" TS or twist-locking plugs pre-installed. All other installation or modification should be performed only by qualified personnel.

This symbol, wherever it appears, alerts you to the presence of uninsulated dangerous voltage inside the

enclosure - voltage that may be sufficient to constitute a risk of shock.

This symbol, wherever it appears, alerts you to important operating and maintenance instructions in the

accompanying literature. Please read the manual.

Caution

To reduce the risk of electric shock, do not remove the top cover (or the rear section). No user serviceable parts inside. Refer servicing to qualified personnel.

Caution

To reduce the risk of fire or electric shock, do not expose this appliance to rain and moisture. The apparatus shall not be exposed to dripping or splashing liquids and no objects filled with liquids, such as vases, shall be placed on the apparatus.

Caution

These service instructions are for use by gualified service personnel only. To reduce the risk of electric shock do not perform any servicing other than that contained in the operation instructions. Repairs have to be performed by qualified service personnel.

- Read these instructions. 1.
- Keep these instructions. 2.
- 3. Heed all warnings.
- 4. Follow all instructions.
- 5. Do not use this apparatus near water.
- Clean only with dry cloth. 6.

7. Do not block any ventilation openings. Install in accordance with the manufacturer's instructions.

Do not install near any heat sources such as 8. radiators, heat registers, stoves, or other apparatus (including amplifiers) that produce heat.

9. Do not defeat the safety purpose of the polarized or grounding-type plug. A polarized plug has two blades with one wider than the other. A grounding-type plug has two blades and a third grounding prong. The wide blade or the third prong are provided for your safety. If the provided plug does not fit into your outlet, consult an electrician for replacement of the obsolete outlet.

10. Protect the power cord from being walked on or pinched particularly at plugs, convenience receptacles, and the point where they exit from the apparatus.

11. Use only attachments/accessories specified by the manufacturer.

12. Use only with the cart, stand, tripod, bracket, or table specified by the manufacturer, or sold with the apparatus. When a cart is used, use caution when moving the cart/apparatus combination to avoid

injury from tip-over.

13. Unplug this apparatus during lightning storms or when unused for long periods of time.

14. Refer all servicing to gualified service personnel. Servicing is required when the apparatus has been damaged in any way, such as power supply cord or plug is damaged, liquid has been spilled or objects have fallen into the apparatus, the apparatus has been exposed to rain or moisture, does not operate normally, or has been dropped.

15. The apparatus shall be connected to a MAINS socket outlet with a protective earthing connection.

16. Where the MAINS plug or an appliance coupler is used as the disconnect device, the disconnect device shall remain readily operable.

17. Correct disposal of this product: This symbol indicates that this product must not be disposed of with household waste, according to the WEEE Directive (2012/19/EU) and your national law. This product should be taken

to a collection center licensed for the recycling of waste electrical and electronic equipment (EEE). The mishandling of this type of waste could have a possible negative impact on the environment and human health due to potentially hazardous substances that are generally associated with EEE. At the same time, your cooperation in the correct disposal of this product will contribute to the efficient use of natural resources. For more information about where you can take your waste equipment for recycling, please contact your local city office, or your household waste collection service.

18. Do not install in a confined space, such as a book case or similar unit.

19. Do not place naked flame sources, such as lighted candles, on the apparatus.

20. Please keep the environmental aspects of battery disposal in mind. Batteries must be disposed-of at a battery collection point.

21. Use this apparatus in tropical and/or moderate climates.

LEGAL DISCLAIMER

Music Tribe accepts no liability for any loss which may be suffered by any person who relies either wholly or in part upon any description, photograph, or statement contained herein. Technical specifications, appearances and other information are subject to change without notice. All trademarks are the property of their respective owners. Midas, Klark Teknik, Lab Gruppen, Lake, Tannoy, Turbosound, TC Electronic, TC Helicon, Behringer, Bugera and Coolaudio are trademarks or registered trademarks of Music Tribe Global Brands Ltd. © Music Tribe Global Brands Ltd. 2018 All rights reserved.

LIMITED WARRANTY

For the applicable warranty terms and conditions and additional information regarding Music Tribe's Limited Warranty, please see complete details online at musictribe.com/warranty.

Zhongshan Eurotec Electronics Limited

No. 10 Wanmei Road, South China Modern Chinese Medicine Park, Nanlang Town, 528451, Zhongshan City, Guangdong Province, China

About the Neutron

EN

- Paraphonic, dual analog VCO design which allows for ingenious music creation.
- Semi-modular design requires no patching for immediate performance.
- Dual 3340 VCOs authentically recreate the classic sound creation.
- 32 in/24 out jack patch bay for sound patching experimentation.
- 5 variable oscillator shapes with pulse width modulation for high quality sounds.
- Blend or switch the OSC & LFO shape. A unique sound creation tool.
- Paraphonic mode allows both oscillators to be independently controlled.
- Audio-rate LFO with 5 waveform shapes, key sync, delay and MIDI sync.
- 2 assignable ADSR generators for modulation of VCF, VCA etc.
- 8192 stage Delay based on legendary BBD (Bucket Brigade Delay) technology.
- Overdrive circuit adds grit and edge to your sound.
- Complete Eurorack solution main module can be transferred to a standard Eurorack case.
- 36 knobs and 7 buttons give you direct and real-time access to all important parameters.
- Powerful 12 dB multi-mode 2 pole filter with three types, Low-pass, Band-pass and High-pass.
- Assignable Sample and Hold with Glide for added creativity.
- Slew Rate Limiter for amazing glissando sound effects.
- White noise generator dramatically expands soundscape creation.
- Pure analog signal path based on legendary VCO designs.
- External audio input for processing external sound sources.
- Servo balanced mono output for the highest signal integrity.
- 3-Year Warranty Program*.
- Designed and engineered in the U.K.

*Warranty details can be found at www.musictribe.com

1. Introduction

An ultra-affordable leap into the warm world of analog synthesis, the Behringer Neutron gives you the power to create virtually any monophonic sound imaginable with incredible power and ease.

The pure analog signal path is based on the legendary V3340 VCO chip with variable oscillator and LFO shapes which can be blended or switched for unique sound creation. For protection and convenience, the Neutron can even be mounted in a standard Eurorack, making it ideal for the studio and/or the road. Owning a Neutron gives you all the power of a monster modular synthesis system in a flexible package with the ability to create bewildering, complex sounds.

1.1 Before you get started

The Neutron was carefully packed in the factory to guarantee safe transport. Nevertheless, we recommend that you carefully examine the packaging and its contents for any signs of physical damage, which may have occurred during transit. If the unit is damaged, please do NOT return it to us, but notify your dealer and the shipping company immediately, otherwise claims for damage or replacement may not be granted.

1.1.1 Initial operation

Be sure that there is enough space around the unit for cooling purposes and, to avoid over-heating, please do not place the Neutron on high temperature devices such as radiators or power amps.

WARNING: The Neutron is supplied with a DC power adapter. It meets the required safety standards. Do not use any other power adapter.

WARNING: Please make sure that all units have a proper ground connection. For your own safety, never remove or disable the ground conductor from any units or AC power cords in your system.

1.2 The product manual

This product manual is designed to give you both an overview of the Neutron, as well as detailed information on each of the controls and parameters. The manual is based on the software release, V2.0.0. The Neutron software must be updated to at least V2.0.0 in order to use the new features and Neutron App. You will find an overview of the physical control elements in the next chapter.

1.3 Preparation

CAUTION: Remember to turn your monitors/loudspeakers on last when powering up your system. Turn your monitors/loudspeakers off first when powering down your system.

2. Features

A Past Classic Reincarnated

Great care has been taken in designing the Neutron to achieve new possibilities in sound creation by reviving a legacy VCO chip from classic synths of yesteryear. By creating a fresh modern take on a semi-modular synth, the Neutron gives you the power to harness the prodigious sound of the V3340 chip. Colossal bass tones through to screaming lead sounds can be achieved to take your sound conception to the next level.

Paraphonic Performance

Paraphonic mode allows the two oscillators to be independently pitched when more than one MIDI note is played. This gives tremendous tonal qualities by hearing two pitches which can evolve and interplay with each other.

Innovative Multi Mode Filter

The very heart of the sound of the Neutron is its highly-flexible 12 dB 2-pole filter, which lets you freely experiment with the cutoff frequency and resonance to create out-of-this-world soundscapes. Neutron's Filter Mode button toggles between LFP, BPF and HPF. You can also adjust the attack, decay, release and sustain controls to affect the cutoff frequency with time. A second filter output allows further audio contortion with its own dedicated output from the patch bay.

Distorted Reality

The VCA passes through the powerful soft clipping overdrive circuit which can add punch and bite to your creations. This section also features a diverse tone control to further expand your creative palette.

Oscillator and LFO morphing

The exquisite ability to blend or morph the oscillator and LFO shape lets new adventures in tone creation begin. By modulating these waveforms, psychedelic sounds can be cooked up comparable to other synthesizers.

Poly Chain Ready

While it is largely a monophonic instrument (one note at a time) the Poly Chain function lets you combine multiple Neutron synthesizers for polyphonic sounds.

Bucket Brigade Delay

The Neutron has an impressive analog bucket brigade delay section. Gone is the cold digital delay chip found in most modern synthesizers and replaced by a warm analog design. Effects from long dub delays to extreme chorusing can be created.

Semi-Modular Design

Designed around an elegantly clean, calculated work stream. The Neutron benefits greatly from its semi-modular design, which requires no patching for quick operation. Just connect your keyboard or computer via MIDI or USB and start exploring the versatile world of analog music synthesis.

Eurorack Ready

Designed to handle the rigors of life on the road or in the studio, your Neutron can easily be transferred into a standard Eurorack case for the perfect integration into your existing system.

Controls and Connectivity

The Neutron has 36 knobs and 7 buttons, all laid out in a highly-intuitive format that puts the fun back into your music creation. Input and output connections include: Audio input, MIDI I/O and thru over USB/MIDI DIN plus a full 32 input, 24 output patch bay for countless experiments into the world of modular synthesis.

You Are Covered

We always strive to provide the best possible customer experience. Our products are made in our own MUSIC Tribe factory using state-of-the-art automation, enhanced production workflows and quality assurance labs with the most sophisticated test equipment available in the world. As a result, we have one of the lowest product failure rates in the industry, and we confidently back it up with a generous Warranty program.

3. Controls

EN

3.1 Top Controls

Image: Sector of the secto	
--	--

3.1.1 Oscillator Section VCO (Voltage Controlled Oscillator)

- 1 and 3 **OSC TUNE** Adjusts the frequency of the oscillators.
- **OSC MIX** Adjusts the blend between oscillator 1 and 2.
- 4 and 5 **OSC SHAPE** Adjusts the shape of the oscillator. Can be configured to switch between fixed waveforms or to blend continuously between adjacent waveforms.
- 6 and ⑦ **OSC RANGE** Adjusts the pipe length of oscillators between 32/16/8. +/-10 octave mode enabled when all 3 LEDs are on.
- OSC SYNC OSC 1 will restart the period of OSC 2, so that they will have the same base frequency.
- PARAPHONIC Allows the two oscillators to be independently pitched when more than one MIDI note is played. If only one note is received, both oscillators will play the same pitch.
- and 11 PULSE WIDTH (PW) Sets the pulse width of oscillator pulse/tone mod waveforms.

3.1.2 VCF Section (Voltage Controlled Filter)

- 12 **FREQ** Adjusts the cutoff frequency of the VCF.
- MODE Selects the filter type. Choose between High Pass Filter (HPF), Band Pass Filter (BPF) and Low Pass Filter (LPF).
- 14) **RESO** Adjusts the resonance of the filter.
- 15 KEY TRK Applies keyboard tracking to the VCF.
- **MOD DEPTH** Sets the depth of filter modulation from the FREQ MOD input.
- 17 **ENV DEPTH** Sets the depth of filter modulation from ENVELOPE 2.

3.1.3 LFO Section (Low Frequency Oscillator)

- SHAPE Adjusts the shape of the LFO with the ability to blend between waveforms.
- 19 **RATE** Adjusts the speed of the selected LFO waveform.
- 20 KEY SYNC Re-trigger the LFO phase with each new MIDI note.

3.1.4 Noise & VCA Bias

- 21 NOISE LEVEL Adjusts the amount of white noise injected into the filter.
- 22 VCA BIAS Opens or closes the VCA.

3.1.5 Delay Section

- 3 **TIME** Controls the rate of the delay. When the time control is fully to the right, the longest delay time is set.
- 24 **REPEATS** Controls the number of repeats or echoes.
- Image: Image: Second Second

3.1.6 Overdrive Section

- DRIVE Sets the amount of overdrive. The drive control can be used to add subtle overdrive through to wild all-out distortion. Turn to the left for gentle warming or turn to the right for more aggression and bite.
- TONE Changes the timbre of the overdriven sound. Turning the tone to the left boosts the lows to create rich warm sounds. Turning to the right gradually thins out the low end and starts to boost the highs to create sharp cutting sounds.
- LEVEL Controls the volume of the overdrive output. When fully off you may hear no audio at the output.

3.1.7 Envelope Section

Envelope 1

ΕN

Envelope 1 is routed to the VCA CV by default.

- 29 A [Attack] Controls the attack time of the envelope.
- 30 **D** [Decay] Controls the decay time of the envelope.
- 3 **S** [Sustain] Controls the sustain level of the envelope.
- 32 **R [Release]** Controls the release time of the envelope.

Envelope 2

Envelope 2 is routed to the VCF filter cutoff via ENV DEPTH control by default. See 17. ADSR knobs 33-36 function the same as 29-32.

3.1.8 Output Section

- 37 VOLUME Controls the output level of the synthesizer. The headphone output is independent of the volume control and has its own control on the back of the synthesizer.
- 38 MIDI IN Accepts incoming MIDI data from the selected MIDI channel.

3.1.9 Sample & Hold

Generates a random pattern based on the sample and hold clock.

- **BATE** Controls the rate of the sample and hold clock.
- (40) GLIDE Sets the rate of change between sample values.

3.2 Slew Rate Limiter & Attenuator Section

- 41 SLEW The Slew Limiter is used to limit the rate of change in a signal. This function is sometimes referred to as 'Glide', 'Glissando', 'Lag Processing', or 'Portamento'. The amount of limitation is set by this control.
- PORTA TIME Controls the rate of change between MIDI notes. The effect is off when turned fully left and increases when turned to the right.

- (4) **ATTENUATOR 1** Used to reduce the amplitude of the input signal. ATT1 can be controlled by a control voltage. See 58.
- ATTENUATOR 2 Passive attenuator, reduces the amplitude of a signal. Normalized patching routes the LFO to the oscillator Pulse Width inputs to provide a Pulse Width Modulation (PWM).

3.2.1 Patch Bay

Input Patch Bay Section

[0 0 0 0]	45 46 47 48
	49 50 51 52
	53 54 55 56
	57 58 59 60
	61626364
$\left[\begin{array}{c} 0 \\ 0 \\ \end{array} \right]$	65 66 67 68
$[0 \ 0 \ 0 \ 0]$	69707172
	73 74 75 76

- 45 **OSC 1** OSC 1 pitch CV.
- 46 **OSC 2** OSC 2 pitch CV.
- 47 **OSC1+2** OSC 1 and 2 pitch CV.
- [48] **INVERT IN** The input signal is inverted at INVERT OUT. See 88.
- (49) **SHAPE 1** OSC 1 Shape CV.
- **50 SHAPE 2** OSC 2 Shape CV.
- 51 **PW1** OSC 1 PW CV.
- 52 **PW2** OSC 2 PW CV.
- 53 **VCF** VCF signal input.
- 54 **FREQ MOD** VCF cutoff frequency CV.
- 55 **RES** VCF resonance CV.
- **56 OD IN** Overdrive signal input.
- 57 VCA IN VCA signal input.
- 58 VCA CV VCA CV.
- 59 **DELAY IN** Delay signal input.
- 60 **DELAY TIME** Delay time CV.
- 61 **E. GATE1** Envelope 1 gate.
- 62 **E. GATE2** Envelope 2 gate.
- 63 **S&H IN** Sample and Hold signal input.
- 64 **S&H CLOCK** Sample and Hold clock input.
- 65 LFO RATE LFO Rate CV.
- 66 LFO SHAPE LFO Shape CV.
- 67 **LFO TRIG** LFO Trigger input.
- 68 MULT MULT signal input. See 92/93.
- 69 ATT1 IN Attenuator 1 signal input.
- 70 ATT1 CV Attenuator 1 CV.

9 NEUTRON User Manual

- 71 **ATT2 IN** Attenuator 2 signal input.
- 72 SLEW IN Slew signal input.
- **SUM1(A)** SUM 1 first signal input. See 98.
- **SUM1(B)** SUM1 second signal input. See 98.
- **SUM2(A)** SUM 2 first signal input. See 99.
- **50 SUM2(B)** SUM 2 second signal input. See 99.

Output Patch Bay Section

- **OSC 1** Output of Oscillator 1.
- **OSC 2** Output of Oscillator 2.
- **OSC Mix** Output of OSC 1/2 mix.
- 80 VCF 1 Main output of the filter.
- 81 VCF 2 Alternate output of the filter.
- 82 OVERDRIVE Overdrive output signal.
- **VCA** Voltage Controlled Amplifier output signal.
- 84 **OUTPUT** Main output signal, post delay.
- 85 **NOISE** Output of the white noise generator.
- 86 ENV1 Envelope 1 output.
- 87 ENV2 Envelope 2 output.
- INVERT Inverted version of signal applied to INVERT IN. See 48.
- 89 LFO Output of the Bipolar LFO (-5 V to +5 V).
- 90 LFO UNI Output of the Unipolar LFO (OV to +5 V).
- 9 **S&H** Sample and Hold output signal.
- 92 **MULT 1** Duplicate of signal applied to MULT IN. See 68.
- **MULT 2** Duplicate of signal applied to MULT IN. See 68.
- 94 **MIDI GATE** MIDI gate output.
- 95 ATT1 Output of Attenuator 1.
- 96 **ATT2** Output of Attenuator 2.
- 97 SLEW Output of Slew.
- 98 **SUM1** Summation of SUM 1(A+B).
- 99 **SUM2** Summation of SUM 2(A+B).
- 100 ASSIGN Assignable output. See User Configurable Options & Features.

3.2.2 Rear Panel

- INPUT Mono unbalanced audio input using a ¼" (6.35 mm) jack cable for processing external sound sources.
- IDD OUTPUT Connect to a mixer or audio interface using a ¼" (6.35 mm) mono jack cable. Remember to turn your monitors/loudspeakers on last when turning on your system and turn your monitors/loudspeakers off first when turning your system off.
- 103 **PHONES** 1/4" (6.35 mm) jack connection to plug headphones in.
- **PHONES LEVEL** Ensure the volume control is at minimum when putting on headphones or when turning the synthesizer on or off.

105 MIDI CHANNEL SELECTION.

Move the four dip switches to select the incoming MIDI channel for the synthesizer.

MIDI CHANNEL DIP SWITCH SETTINGS

- IDE MIDI THRU The 5-pin MIDI DIN connector is used to pass through MIDI data received at the MIDI INPUT.
- USB PORT Connects to a computer via standard USB cable. The Neutron will display in your DAW as a class-compliant USB MIDI device, capable of sending and receiving MIDI information.
- POWER SWITCH Turns the synthesizer on and off. Make all audio connections before powering on.
- 109 **POWER INPUT** Connect the supplied power supply only.

4. Overview

EN

This overview will help you set up the Neutron analog synthesizer and briefly introduce its capabilities.

4.1 Connection

The Neutron has a ¼" (6.35 mm) mono jack output on the rear of the unit which is also duplicated on the patch bay via a 3.5 mm output. Audio input is via a ¼" (6.35 mm) mono jack on the rear panel. Please consult the connection set-up quide for examples (8.1).

Caution: Do not overload the 3.5 mm inputs. They can only accept the correct level of voltages as shown in the specification tables later in this manual. The 3.5 mm outputs should only be connected to inputs capable of receiving the output voltages. Failure to follow these instructions may damage the Neutron or external units.

4.2 Software Setup

The Neutron is a USB Class Compliant MIDI device, and so no driver installation is required. The Neutron does not require any additional drivers to work with Windows and MacOS.

4.3 Hardware Setup

Make all the connections in your system. Use the rear panel MIDI switches to set the Neutron to a unique MIDI channel in your system. Connect an external keyboard with MIDI output directly to the Neutron MIDI IN 5-pin DIN type input or via MIDI over USB. Apply power to the Neutron using the supplied power adapter only. Ensure your sound system is turned down. Turn on the Neutron rear panel power switch.

4.4 Oscillator Section

Each oscillator has a tune control which gives approximately +/-1 octave range in 8/16/32 modes or a range from 0.7 Hz to over 50 kHz when all range LEDs are illuminated which is around +/-10 octaves.

The OSC MIX control is used to blend between the two oscillators to create rich harmonic sounds.

You can adjust the SHAPE control for each oscillator to select different waveforms, if in blend mode, the waveforms will morph into one another in a smooth transition.

The five oscillator shapes are:

The P. WIDTH affects the first two wave shapes, TONE MOD and SQUARE WAVE. When OSC SYNC is engaged, oscillator 1 tracks the MIDI note and provides a reference to reset the period of oscillator 2.

When the PARAPHONIC switch is engaged, it allows the two oscillators to be independently pitched when more than one MIDI note is played simultaneously. If only one note is played, both oscillators will be driven at the same pitch.

The NOISE control injects white noise into the filter, which can be used to add another texture to the sound. Noise can be used to create percussive sounds when used with short VCA envelope settings.

VCA Bias is used to control the VCA. It allows the user to 'open' the VCA without triggering the envelope (e.g. with a MIDI note), allowing audio to sound continuously.

4.5 Filter Section

The Neutron has a powerful 12 dB filter with three modes available:

The mode button steps through each filter mode.

The FREQ control sets the filter cutoff frequency. The RESO control adjusts the resonance of the filter. When the resonance control is set to at, or close to, maximum the VCF will become self-resonant and produce a sine wave tuned to the cutoff frequency of the filter. This tone can be used in sound creation and played in tune with the oscillators by activating KEY TRACK and tuning the VCF using the FREQ control.

By default, the LFO is patched through the FILTER DEPTH control. This enables modulation of the filter frequency using the LFO. The VCF has a second output which is accessible from the patch bay (VCF 2). VCF 2 mode is determined by the select VCF mode. The relationship is:

Mode = \bigcirc , VCF2 = \bigcirc

Mode = \bigcirc , VCF2 = \bigcirc

Mode = \bigcirc , VCF2 = \bigcirc

This allows for additional filter modes. For example, a notch filter can be created when the filter mode is set to by summing VCF 1 and VCF 2, then patching the summed output into OD IN.

KEY TRACK applies keyboard tracking to the VCF.

This sets the filter cutoff frequency based on the latest MIDI note received. The base cutoff frequency is set using the FREQ control with MIDI notes increasing the cutoff frequency relative to the note being played. Additionally, this allows the filter to be played like an oscillator when the resonance control is turned up.

4.6 LFO Section

The Neutron LFO has a frequency range of 0.01 Hz to 10 kHz. This allows low frequency modulation up to audio rate modulation using the LFO.

The Shape control sets the type of LFO waveform. When selecting the LFO waveform, the control can be set to select between fixed types or to blend between wave shapes. The five LFO shapes are:

With KEY SYNC engaged, the LFO is re-triggered when a MIDI note is received.

4.7 Delay Section

EN

The Neutron has an impressive analog bucket brigade delay section. Delay times of 24 ms to 640 ms can be set. Effects from long dub delays to extreme chorusing can be created. Set the MIX control at 12 o'clock. Then try turning the RATE control fully left with the REPEAT control to the right a little for a long dub style sound. Chorus effects can be created by modulating short delay times with an LFO applied to the DELAY TIME input via one of the ATTENUATORS.

4.8 Overdrive Section

The overdrive section can be used to add subtle warmth through to extreme distortion by using an analog soft clipping circuit. Turning the DRIVE control to the right increases the amount of distortion, adding rich harmonics. The TONE control shapes the sound of the overdrive. To the left, high-end filtering is applied to take away the harsh edge. When the TONE control is turned to the right the low end is filtered out to give a brighter sound. As DRIVE level is increased, the LEVEL control can be utilized to turn down the volume of the synthesizer, without affecting the drive or tone of the sound.

NOTE: If the level control is all the way down it is possible that no sound will be heard.

4.9 Envelope Section

The Neutron contains two ADSR (Attack, Decay, Sustain, Release) envelopes. Both envelopes are triggered when a MIDI note is received unless the E.GATE 1/2 inputs are used.

ENVELOPE 1 is routed to the VCA CV by default. This allows the signal to pass through the unit when a MIDI note is being played and closes the VCA when no note is being played.

ENVELOPE 2 is routed to the VCF, via the ENV DEPTH control, by default. This can be used to create filter sweeps when a MIDI note is being played. Try different combinations of slow and fast settings to create different sounds and textures.

4.10 Sample And Hold

The sample and hold function generates a random, stepped waveform by taking a sample of the input signal. The sample rate is governed by the RATE control or the SH CLOCK input. This generates a distinctive, bubbling random waveform that can be used to modulate other synth parameters. Its random nature makes it well suited to sci-fi effects. Try patching S&H to OSC 1&2 to modulate the oscillator's pitch. The distinctive gurgling effect can be heard throughout sci-fi movies.

The GLIDE control limits the rate of change between samples, allowing smooth transitions between sample values.

4.11 Slew Rate Limiter

PORTA TIME is the amount of time taken to transition between two MIDI notes. This feature can be used to add a pleasing musical slide into your sounds.

The SLEW Limiter is used to limit the rate of change of a signal. For example, Slew can be used to add Portamento to pitch CVs generated from an external sequencer.

4.12 Attenuators

ATTENUATOR 1 is an additional VCA which can be used to reduce the amplitude of the input signal based on the Att1 CV control or the attenuator 1 front panel control (43).

ATTENUATOR 2 - Reduces the amplitude of a signal based on the attenuator 2 control (44). The BIPOLAR LFO output is routed to the attenuator 2 input by default.

Note: The attenuator 2 output is also routed to P.WIDTH 1 and P.WIDTH 2 controls by default.

4.13 Pitch Bend Messages

The Neutron responds to pitch bend messages via USB MIDI or the MIDI IN and is set to +/-2 semitones as a default. It is possible to change this with SysEx Messages or via the Neutron App.

5. User Configurable Options & Features

All features in this manual require software version V2.0.X or higher in order to function correctly. Please visit the www.behringer.com to find the latest software version.

5.1 Software Version

Press and hold OSC SYNC and PARAPHONIC until all 3 OSC1 octave LEDs light up. The LEDs will then flash out the software version, just count the flashes. The version is of the form <Major>. <Minor>. <Build number>. Major is flashed on the 8' LED, minor on the 16' LED & build number on the 32' LED. All 3 OSC1 octave LEDs will light up again to indicate the end of the output.

5.2 Assignable Output

It is possible to select the source of the ASSIGN output jack. To change the source press & hold the OSC SYNC button until both the RANGE buttons are flashing. The currently selected assignable output is indicated by the flashing LFO shape LED - the available options are (clockwise from the sine shape):

- ₩ OSC 1 CV
- 🖂 OSC 2 CV
- *Note On" velocity
- 🖅 Modwheel
- Aftertouch

Use the two range buttons to change the selected output. When you're done, press and hold the OSC SYNC button until the RANGE buttons stop flashing. The currently selected assignable output value will be stored and will persist across power cycles.

5.3 Envelope Retriggering

Enter the Assignable Output mode (see above). The KEY TRK button toggles the retriggering mode. When the KEY TRK LED is on, retriggering is enabled and vice versa.

5.4 OSC & LFO Shape Mix Blended or Switched

It is possible to either blend or switch the OSC and LFO shape. This feature is an incredibly powerful, unique sound creation tool. For OSC1, press and hold the OSC1 RANGE button (this will enter the tuning feature). The PARAPHONIC button will flash if shape mixing is disabled, or it will throb if shape mixing is enabled. Press the PARAPHONIC button to toggle the shape mix state. Press and hold the OSC1 RANGE to leave this mode. Similarly, for OSC2 shape mixing press and hold OSC2 RANGE; for LFO shape mixing press and hold LFO KEY SYNC.

5.5 Tuning

The Neutron will self-calibrate at start up. An additional "tune" feature is designed to allow the user to manually tune the oscillators to the last played MIDI note. To tune OSC1 or OSC2 to the nearest 'C' note, press and hold the appropriate RANGE button until the octave LED starts to flash. Play a MIDI note. The LFO shape LEDs will display the tuning; turn the TUNE control until only the descending saw LED is lit. That oscillator will now be playing a 'C'. This enables the accurate tuning of intervals. For example, play an 'F' note, then tune as above. That oscillator is now playing a fifth above the root note. To exit tuning mode, press and hold the RANGE button until the octave LED stops flashing. This is available in +/-10 octave mode (note that the long period of very low notes means that the tuning feature appears to be unresponsive).

5.6 Tune Pot Bypass

Press and hold OSC (1 or 2) RANGE and PARAPHONIC buttons until the selected OSC octave LED starts to flash. This indicates that the tune pot for that OSC is now inactive and all notes played are in tune. Press and hold OSC RANGE and PARAPHONIC buttons again to leave this mode. The LED will return to solid to indicate that the tune pots are in circuit.

5.7 LFO MIDI Clock Sync

The LFO will sync to the beat when receiving MIDI clock (it does nothing with MIDI time code). The LFO rate position determines the clock multiplier-divider. The LFO divider values are, from counter clock wise to clockwise: 4/1, 3/1, 2/1, 3/2, 1/1, 1/2, 3/8, 1/3, 1/4, 1/5, 3/16, 1/6, 1/7, 1/8, 3/32, 1/12, 1/16, 1/24, 1/32, 1/48, 1/64.

5.8 MIDI Note Range

The supported MIDI note range is 24 (C1) to 96 (C7) inclusive. Notes outside of this range will still trigger the Neutron. MIDI notes 0-23 will trigger note 24 (C1) note. MIDI notes 97-127 will trigger note 96 (C7).

5.9 LFO Depth

The depth of the LFO can be changed by long pressing the KEY SYNC button. Now the LFO shape LED wheel will indicate the current LFO depth: 1% to 100% (64 steps). Use the range buttons as + and - buttons. Pressing and holding the range buttons will continually adjust the depth rather than having to step through each value. Changing the LFO depth allows you to add subtle movement to a sound. For example, applying the LFO to filter depth.

5.10 LFO One-shot mode

It is possible for the LFO to be triggered once. First ensure KEY SYNC is active. One shot mode will only work if LFO KEY SYNC is on. Then press and long hold KEY SYNC and use the VCF mode buttons to select the mode.

The VCF mode LEDs will indicate the LFO one-shot mode:

HPF 🕜 = Disabled

BPF 🔿 = Enabled

You can enable/disable the LFO one shot staccato or legato mode, with a press of the KEY TRACK button. Enabling the re-trigger LFO on overlapping notes is Legato mode. Disabling the re-trigger LFO is staccato mode. This gives you two different ways to play the Neutron musically.

5.11 LFO Key Rate

Long press KEY SYNC to enter the LFO Sub Menu, then press and hold the KEY TRK button whilst playing a note. This will set the selected note as the LFO Base note. Now when you play up and down the keyboard the LFO speed will either speed up (double the base LFO rate for each octave above the base key) or slow down (halving the LFO rate for each octave below the base key). This function is great for creating unusual modulations and textures.

5.12 LFO MIDI Clock Sync

Long press LFO KEY SYNC. The OSC SYNC button LED will now indicate the MIDI clock sync mode. On - LFO rate sync'd to MIDI clock. Off - LFO rate free-running. Use this function to sync the LFO to your DAWs MIDI Clock so the Neutron's LFO plays in time with your song depending on the chosen settings.

5.13 VCF Mod Source

Long Press VCF Mode then the LFO shape LED wheel will indicate the current mod source selection:

 $\overline{\sim}$ Not used

EN

- ₩ Disabled
- Note-On velocity
- Mod-wheel (CC1)
- Aftertouch

Press RANGE +/- to select the output.

Press VCF MODE to toggle between setting the mod source & depth.

This gives you the power to play the filter via velocity changes or use Aftertouch to open up the filter after a note is played.

5.14 VCF Mod Depth

Long Hold filter (VCF) MODE, Press VCF MODE to toggle between setting the mod source & depth. When in VCF mod depth mod the LFO shape LED wheel will indicate the current VCF mod depth: 1%–100% (64 steps)

Press RANGE +/- to select the output of depth. Adjusting the VCF Mod depth allows a sound to have a more restricted filter sweep which may be used to create interesting effects.

5.15 Poly-Chaining

If you have multiple Neutron units, you can connect them in a 'Poly Chain' to produce polyphonic sounds. The Neutron works by sending unhandled notes to the next in the chain. When the chain runs out, the notes are dropped (i.e. not played). The first Neutron plays the first played note, the second plays the second, the third plays the third etc. Note that a Neutron in Paraphonic mode will handle 2 notes. Each Neutron must have the same MIDI channel number set using the rear panel switches. The Poly Chain connections are shown in the diagram. Set the Poly Chain ON for all Neutrons. The last Neutron in the chain can either be set to Poly Chain on or off depending on how you would like the MIDI information to be handled. If Poly Chain is on, the last Neutron will act as if it is sending the next played note over the maximum number of notes played to the next device in the chain, and the note will not be heard or dropped. If Poly chain is off for the last Neutron, the next played note over the maximum number of notes will steal the last played note from the last Neutron.

To toggle Poly Chain mode, press and hold the PARAPHONIC button for 2 seconds. The LED will repeatedly flash (once when in mono mode - twice when in duo mode). A short press on the PARAPHONIC button will still toggle the PARA/DUO mode. Hold PARAPHONIC to exit. If you are only using one Neutron, make sure the Poly Chain is OFF.

5.16 Note Priority

Note priority can be set by long pressing the OSC SYNC button. The VCF mode LEDs will now indicate the note priority. Note priority allows different playing styles and effects to be used creatively.

HPF \bigcirc = high note priority

BPF \bigcirc = last note priority (default)

LPF \bigcirc = low note priority

5.17 Pedal Mode

Press & hold OSC2, then pressing KEYTRK will toggle the state of of the mode.

When the KEYTRK LED is lit - OSC 2 will play the last note played before Pedal

Mode was enabled with each new note played. This starts when any key is pressed.

When KEYTRK LED is not lit - OSC2 will behave normally.

5.18 Features via Sysex and Neutron app only

Autoglide

Autoglide sets the number of semitones that the start of the note 'glides through' for the selected note. This can be a + value (so the note glides down), or a - value (so the note glides up). It is played as a smooth and linear increase or decrease in pitch rather than a semitone step-change. The speed of the glide is set by the Porta control.

When activated the Neutron will now glide up/down +/-12 semitones. If notes overlap (played legato) this will allow easy programming of 303 style patterns using a typical piano roll editor in a DAW.

Set pitch bend range

Select the pitch bend range from 0 to +/-24 semitones (two octaves).

Key split

Create a key split at the desired note. Notes played below the split point will trigger oscillator 1 and notes above will trigger oscillator 2.

LFO shape order

Populate the 5 LFO locations with any of the 5 available wave shapes. The order will directly match the order of the LFO control on the unit going clockwise.

LFO phase

Select the start position of the waveform each time the LFO is triggered. This can be set for each of the 5 LFO positions independently. This can be used to create unusual modulations and textures.

Setting midi channel (auto disable dip switches)

Set the MIDI channel without the need to access the MIDI DIP switches on the back of the unit. Setting the channel this way automatically disables the DIP switches. This function is useful when using the Neutron in a separate Eurorack set up rather than its factory supplied case.

Poly chain system

Poly chain system using Neutron's audio input

Advanced Features	Access	Action	Result	Exit
Change Assignable Output (ASSIGN)	Hold OSC SYNC	Use RANGE buttons to change Output function	LFO shape displays selected option.	Hold OSC SYNC
Envelope Retriggering	Hold OSC SYNC	The KEY TRK button toggles the retriggering mode	When the KEY TRK LED is on - retriggering is enabled	Hold OSC SYNC
Note Priority	Hold OSC SYNC	Press the VCF mode button to cycle through the options	The VCF mode LEDs will indicate the note priority. (HPF \bigcirc) = high note priority - (BPF \bigcirc) = last note priority - (LPF \bigcirc) = low note priority.	Hold OSC SYNC
Restore Defaults	Hold PARAPHONIC, KEY TRK and OSC SYNC on power on.	The process only takes a moment. When you see the LED sweep you can let go of the buttons	Defaults restored	None
OSC 1 Shape (Blend or Switched)	Hold OSC1 RANGE	PARAPHONIC will either throb or flash. Push to toggle mode	OSC 1 Shape mode will toggle. Blend or switch	Hold OSC 1 RANGE
OSC 2 Shape (Blend or Switched)	Hold OSC2 RANGE	PARAPHONIC will either throb or flash. Push to toggle mode	OSC 2 Shape mode will toggle. Blend or switch	Hold OSC 2 RANGE
OSC 1 Tuning	Hold OSC1 RANGE	LFO shape LEDs shows tuning with respect to the last played MIDI note	Top center LFO Shape LED indicates that the oscillator is in tune	Hold RANGE 1
OSC 2 Tuning	Hold OSC2 RANGE	LFO shape LEDs shows tuning with respect to the last played MIDI note	Top center LFO Shape LED indicates that the oscillator is in tune	Hold RANGE 2
Pedal Mode	Hold OSC2	KEYTRK will toggle the state of of the mode	When the KEYTRK LED is lit - OSC 2 will play the last note played before being enabled. When KEYTRK LED is not lit - OSC2 will behave normally	Hold OSC2
Poly Chain mode	Hold PARAPHONIC	The LED will flash once in mono mode - twice quickly in duo mode	Poly-Chain mode toggled on/off	Hold PARAPHONIC
LFO (Blend or Switched)	Hold LFO KEY SYNC	PARAPHONIC will either throb or flash. Push to toggle mode	LFO Shape mode will toggle. Blend or switch	Hold LFO KEY SYNC
LFO Depth	Hold LFO KEY SYNC	Press RANGE +/- to select the output depth.	LFO shape LED wheel will indicate the current LFO depth: 1% to 100% (64 steps)	Hold LFO KEY SYNC
LFO one-shot mode	Enable KEY SYNC, then Hold LFO KEY SYNC	Enable KEY SYNC. Press the VCF MODE button to cycle through the options.	The VCF mode LEDs will indicate the LFO one-shot mode: HPF = Disabled - BPF = Enabled -	Hold LFO KEY SYNC
LFO envelope retrigger	Hold LFO KEY SYNC	the KEY TRK button LED will indicate the LFO retrigger mode	On - LFO will retrigger for overlapping notes (staccato), Off - LFO will not retrigger for overlapping notes (legato).	Hold LFO KEY SYNC
LFO key rate track	Hold LFO KEY SYNC	Long press KEY TRK whilst playing a note to set that note as the LFO base note. Long press KEY TRK when no note is played to disable	Sets that note as the LFO base note	Hold LFO KEY SYNC
LFO MIDI Clock Sync	Hold LFO KEY SYNC	Press OSC SYNC to toggle the state	The OSC SYNC button LED will indicate the MIDI clock sync mode. On - LFO rate sync'ed to MIDI clock. Off - LFO rate free-running	Hold LFO SYNC
VCF mod source	Hold filter (VCF) MODE	Press VCF MODE to toggle between setting the mod source & depth	LFO shape LED wheel will indicate the current mod source selection:	Hold filter (VCF) MODE
			Not used	
			Disabled	
			Note-On velocity	
			Fr Mod-wheel (CC1)	
			Aftertouch	
			Press RANGE +/- to select the output	
VCF mod depth	Hold filter (VCF) MODE	Press VCF MODE to toggle between setting the mod source & depth	LFO shape LED wheel will indicate the current VCF mod depth: 1%–100% (64 steps)	
	Hold filter (VCF) MODE	Press RANGE +/- to select the amount of depth		

EN

EN

6. Eurorack Installation

The Neutron synthesizer can be taken out of its factory chassis and fitted into a standard Eurorack case (not supplied).

We recommend that this procedure is undertaken only by an experienced service technician, to prevent personal injury, or damage to the unit. The Eurorack case will need its own suitable power supply unit to power the Neutron synthesizer.

A 10-pin connector on the rear of the main PCB of the Neutron allows the +12 VDC power supply connection to be made. A 10-pin to 16-pin adapter ribbon cable is supplied to connect to your power supply.

Before proceeding, make sure that your power supply is capable of supplying +12 VDC, 1 Amp.

Make sure that the connections using the supplied adapter cable will supply the ground and power to the correct pins.

6.1 Procedure

Follow all steps in the order in which they are presented.

1. Disconnect the power cord and all other connections to the Neutron.

2. Undo the 8 screws on the top panel as shown. There is no need to undo any other screws.

3. Carefully lift the top panel assembly and turn it over so the PCB is facing

upwards. Be careful not to pull on the cable from the lower side of the main PCB.

4.Disconnect the 24-pin cable from the side of the main PCB of the Neutron, X58 and remove the assembly from the chassis.

5. Store the chassis assembly and the power supply adaptor in a dry safe place.

6. Securely connect the 10-pin end P1 of the supplied adapter cable to connector X59 on the Main PCB of the Neutron.

7. Make sure your power supply is turned off and disconnected from the AC mains.

8. Make sure that your power supply will supply a 12 V voltage to the pins of the connector, as shown in the diagram.

9. Securely connect the 10-pin end P2 of the supplied adapter cable to your power supply, and double check all connections are correct.

10. Securely install the Neutron Synthesizer into your Eurorack, using 8 screws in the front panel.

11. Perform a full system test and safety test before using the Neutron.

12. The 3.5 mm OUTPUT connector on the top panel is used instead of the rear output which is no longer present.

7. Software Update & Calibration

7.1 Software Update

The Neutron DFU (Device Firmware Upgrade) updater can be downloaded by going to www.musictribe.com

Please follow the steps documented in the release notes accompanying the update.

7.2 Assign Out Calibration

This calibration has been carried out by the factory at the manufacturing stage but instructions are described here if needed.

For this, you'll need a 3.5 mm mono patch cable, a digital voltmeter, and MIDI-OX installed on your PC.

1. Insert the patch cable into the ASSIGN output on the Neutron front panel.

2. Run MIDI-OX on your computer. Go to OPTIONS > MIDI DEVICES.

3. Select Neutron as the MIDI IN and MIDI OUT

4. Make sure "Pass SysEx" at the bottom of the Options drop-down menu is ticked.

5. In the VIEW menu, select SysEx...

6. In the Command Window, enter the SysEx command to be sent to the Neutron. For ASSIGN out calibration at 1 V, the command is: F0 00 20 32 28 7F 10 20 F7

7. In the Command Window drop-down menu, select Send SysEx. The Sysex command will be sent to the Neutron. Both 8' octave range LEDs will be flashing to indicate the Neutron is in ASSIGN out 1 V calibration mode.

8. Measure the voltage on the patch cable attached to the ASSIGN out and adjust until it reads 1 V +/- 0.001 V.

9. To increase the voltage send the Sysex command F0 00 20 32 28 F7 10 23 F7.

To decrease the voltage, send the Sysex command F0 00 20 32 28 F7 10 22 F7.

Repeat until the voltage reads 1 V +/- 0.001 V. Then move on to step 10. 10. Send the Sysex command for ASSIGN out calibration to the Neutron at 4 V. The command is F0 00 20 32 28 7F 10 21 F7.

Both 32' octave range LEDs will be flashing to indicate the Neutron is in ASSIGN out 4 V calibration mode.

Repeat step 9 until the voltage reads 4 V +/- 0.001 V. Then move onto step 12.
Save the calibration data and exit calibration mode by sending the Sysex command F0 00 20 32 28 7F 10 24 F7.

The Neutron will return to its normal operating mode.

EN

7.3 Bucket Brigade Delay Calibration

The Neutron Delay stage is designed to give as much control and variety as possible to the user. With that in mind, it may be necessary to tweak your Neutron to sound the way you want it to.

First, decide how much feedback you want. Adding more feedback gives the option of having the delay stage feedback on itself creating screaming effects. This results in higher distortion through the circuit, which may be a desirable effect.

Warning! When completing this procedure please keep the level down low as it may get loud.

Open the Neutron by removing the top 8 screws. Lift the top panel carefully from the lower edge to give access to trim pots VR37 and VR38. Take care not to put strain on the ribbon connector.

1. Set the Delay Time and Repeats controls fully clockwise (turning to the right) and set the Mix control to 12 o'clock.

- 2. Turn VR37 fully CW.
- 3. Turn the Time control fully counter clockwise to the left (faster repeats), the circuit should feedback and scream at you.
- 4. With the delay feeding back on itself turn VR37 CCW until the repeats soften but do not die off.
- 5. To test the setup:

- Turn the repeats fully CCW so that there are no repeats and the Time fully clockwise for long repeats.

- Next, turn the repeats up full again.

- When the Time control is turned fully CCW the delay should start to feedback again, if not dial VR37 CW a little further. Or alternatively, if it feeds back too easily or if you don't want this behavior at all, turn VR37 a little more CCW to reduce the effect of the feedback.

If you would like clean repeats lower the amount of feedback so the delay does not feedback on itself easily, or at all, and keep the level through the delay circuit low. This can be achieved by using the Overdrive level to control the amount of signal sent to the delay. This flexibility lets you achieve clean and crisp repeats or a delay that screams at you as you let it feedback on itself.

Clock Noise Calibration

Once the repeats calibration has been completed you may need to dial out some clock noise from the delay output. This procedure has knock on effects to the repeats calibration so once complete, you may need to repeat the previous stage until you find the right balance. The output level may need to be increased so that clock noise can be heard; this will sound like a high frequency drone in the background of any signals played through the delay.

1. Turn Time fully CW and both Repeats and Mix to 3 o'clock.

2. Set VCA Bias fully CW so a signal is fed through the system and heard at the output. If you have no audio check that the VCF is not cutting off any audio and that the Overdrive level is up. A low frequency sound may be best, one so that you can easily distinguish the clock noise.

3. With a constant drone on the output turn VR38 until you can hear clock noise, then move VR38 until the clock noise is at a minimum. Note, with long repeats there will always be a bit of clock noise present.

8. Patch Bay

In a patchable semi-modular synthesizer such as the Neutron, inputs and outputs are independent from one another. It is up to the user to patch the modules together as they wish. This is different from a normalized synthesizer where the functions are hard-wired together and the user just changes parameters. Patchable modular synthesizers are more complex to operate but give infinite options. Below is a table of default or normalized routings. Please refer to the numbering diagram earlier in this document. There follows a block diagram of the normalized signal flow to show how audio travels through the Neutron.

DEFAULT ROUTINGS		
OUTPUT FROM	GOES TO	THEN INTO
OSC MIX + EXT INPUT + Noise	VCF>OD>VCA>DELAY	LINE OUT + Headphone
ENV 1	VCA CV	
LFO (BIPOLAR)	ATT 2	ATT 1
ATTENUATOR 2	PULSE WIDTH 1&2	
NOISE	SAMPLE AND HOLD	
LFO (BIPOLAR)	FILTER DEPTH	VCF FREQUENCY CV
ENV 2	ENV DEPTH	VCF FREQUENCY CV
ASSIGN	ATT1 CV	
LFO (BIPOLAR)	MULT INPUT	
ENV 2	INVERT	
E. GATE1	E. GATE2	UNLESS OVERRIDDEN USING E. GATE 2 INPUT

8.1 Tips and Tricks of the Patch Bay

1. Patch Sample and Hold out into FREQ MOD in. Turn MOD DEPTH to 12 o'clock. Then Turn the S&H rate to 3 o'clock and the GLIDE to 12 O'clock. This will give you a random filter position which glides between filter cutoff points.

2. Patch LFO to PW1 and MULT 1 into INVERT IN, then INVERT OUT to PW2 for opposite direction pulse width modulation. This is a is a variation that sounds slightly different to turning ATTENUATOR 2 (see normalized routings for details).

3. With OSC 1&2 in blend mode, patch LFO to SHAPE 1. Patch MULT 1 into INVERT IN then INVERT OUT into Shape 2 for opposite direction oscillator shape shifting, a very powerful sound creation tool.

4. Set both OSC to Tone Mod Shape and ENV 2 to PW1&2 via the Mult with slow ADSR settings. This gives a rich Pulse Width Modulation (PWM) effect.

5. Patch LFO into ATT 1 IN, then patch ATT1 OUT to DELAY TIME IN. Set a short delay with the delay mix around 50% and adjust the LFO speed and shape to create a chorus effect.

6. Patch VCF 1&2 into Sum 1 A&B. Patch the output of SUM 1 into OD In. Set the filter shape to LPF to create a notch filter.

7. Patch a square wave shape LFO out to the delay time in. Then try ENV2 out patched to LFO Rate. This sounds like and 80's computer game.

8. Patch OSC 1 into OSC 2 with OSC SYNC active for frequency modulation synthesis.

9. Patch LFO into ATT 1 IN, Then ATT 1 into OSC2 with OSC SYNC active. This gives another style of FM synthesis to experiment with while using both oscillators. Try changing the position of ATT 1 to hear subtle changes.

10. Patch ASSIGN to ATT1 CV, set ASSIGN to MOD WHEEL, patch ATT1 OUT into OSC 1&2 pitch CV, this way the mod wheel sets the depth of vibrato, with LFO rate/ shape setting the characteristics and ATT2 setting the maximum depth.

Neutron normalised routing.

9. Neutron Set-up Examples

Studio System

Live Set-up

Active Loudspeakers

EN

10. Preset Patches

The following examples give you a glimpse into the wonderful world of modular synthesis. Try these patches to show the versatile power of the Neutron.

Default Patch - This is a great starting point for sound creation. No patching required. A standard sawtooth sound will be audible using these settings.

Out Of This World – A Sci-fi style sound showing off the S&H function of the Neutron. Here, the VCF self-resonates and drops into wonderfully deep sub tones. Play with the VCF FREQ control to sweep through various textures. Patch VCF 2 into OSC 2, LFO UNI into OSC 1&2 and S&H into LFO RATE.

Edge Synth – A slow evolving sound using frequency modulation and wave shape blending to create either a screaming when the filter is set to HPF or a dark bubbling bass with the filter set to LPF.

Patch S&H OUT to OSC 2 IN, LFO to DELAY TIME and MULT 1 (LFO BY DEFAULT) to SHAPE 1.

Quantum Loop - A Sub Sawtooth sound with VCF squelch. A sample & hold noise loop is added to give some movement to the sound. Try different amounts of resonance to hear the variations.

Patch OSC MIX to S&H IN then S&H OUT to FREQ MOD.

11. Troubleshooting

Before turning on the Neutron power, please check that:

Your speakers or headphones are correctly connected.

The external devices are powered-off.

Turn the VOLUME knob on the Neutron to the off position.

Turn on the POWER switch located on the rear panel.

The Neutron will run its startup routine.

Once the Neutron has stopped the LED calibration sequence, you can then turn on power to the connected devices and raise the volume to an appropriate level.

Before turning off the Neutron, please check that:

The output level is down on all connected audio devices.

The power is then turned off for all connected audio devices.

11.1 There is no sound coming from the synthesizer.

Check if the audio connections are correct.

Check if the volume control is turned up.

Check if the overdrive volume is up as this can cut audio if fully turned to the left.

If using headphones, check that the volume on the rear of the Neutron is turned up.

Check the position of the FREQ cutoff point. Depending on the filter type selected, it determines where the FREQ control will let audio pass through the filter stage.

Check that any patch cables that are in use are not cutting the sound. For example, if a 3.5 mm cable is patched into VCA IN and the other end of the cable is not plugged in, no sound will be audible.

11.2 There is no MIDI data coming from an external source.

Check if the MIDI connections are made to the USB or the MIDI IN on the front panel.

Check if the Neutron MIDI channel is set to the same one as the transmitting device using the DIP switches on the rear.

Check that you are using either USB or MIDI. The Neutron may not respond if two sets of MIDI data are being transmitted to it via USB and the MIDI IN port at the same time.

11.3 The synthesizer is behaving erratically.

Check that any connected devices/applications are not creating a MIDI loop which is feeding back MIDI data.

11.4 The synthesizer sounds out of tune.

The Neutron calibrates its tuning on start up. If it sounds out of tune, please look at section 5.4 to tune the oscillators to your choice of MIDI note.

11.5 Buzzing or humming sounds can be heard from the audio outputs.

USB and or audio connections made between different devices using different power supplies, sources or sockets can sometimes create ground loops. You can attempt to resolve these grounding issues between computers and the Neutron by following good grounding practice and ensuring all devices use the same ground point. Unplugging one cable at time can make the background noises better or worse, depending on how this affects the remaining ground loops.

By removing every audio cable and working through your studio item by item, you can potentially eradicate ground-loop problems. Other possible solutions include the use of a DI box to connect the Neutron to your audio mixer or sound card where the transformer will isolate the audio connections.

11.6 There is no sound when using the external audio input.

The Neutron needs the VCA envelope to be triggered and open. This can be achieved via MIDI or an external E.GATE 1 input, adjust the ADSR settings in order to hear the input signal.

Another way to use the external audio input is turning up the VCA BIAS in order to hear audio.

12. Specifications

/nthesizer Architecture Number of oscillators	2 × 1/2240	
Number of oscillators	2 x V3340	
Туре	Analog	
Oscillators	2 (0.7 Hz to 55 kHz across 4 ranges)	
LFO	1 (0.01 Hz to 10 kHz)	
VCF	1 (switchable low pass, band pass or high pass (12 dB/octave slope), dual output	
Envelopes	2 analog envelope generators	
onnectivity		
External input	1/4" TS, unbalanced, 100 k Ω impedance	
Output	¼" TRS, balanced, max. 12dBu	
Headphones	¼" TRS, balanced	
Headphones output impedance	8 Ω	
MIDI In/Out (soft Thru)	5-pin DIN/ 16 channels	
USB (MIDI)	USB 2.0, type B	
SB		
Туре	Class compliant USB 2.0, type B	
Supported operating systems	Windows 7 or higher/ Mac OS X 10.6.8 or higher	
scillator Section		
	Tune (OSC 1&2): +1/-1 octave (8', 16' or 32') or +10/-10 (full range)	
Controls	OSC mix: (linear blend control between OSC 1&2)	
Controls	Shape (OSC 1&2): Tone Mod, Square, Sawtooth, Triangula or Sine	
	UI SIIIE	
	Pulse width: 0 to 100% (OSC 1&2)	
Switches	Pulse width: 0 to 100% (OSC 1&2)	
Switches	Pulse width: 0 to 100% (OSC 1&2) Range (OSC 1&2): 8', 16' or 32' or full range (all 3 LEDs)	
Switches	Pulse width: 0 to 100% (OSC 1&2) Range (OSC 1&2): 8', 16' or 32' or full range (all 3 LEDs) OSC sync: on/off	

Envelope 1	
	Attack: 300 μs to 5 s (linear attack)
Controls	Decay: 2.4 ms to 10 s (exponential decay)
Controis	Sustain: 0 V to 9 V
	Release: 1.5 ms to 6 s (exponential release)
Envelope 2	
	Attack: 300 μs to 5 s (linear attack)
Controls	Decay: 2.4 ms to 10 s (exponential decay)
controls	Sustain: 0 V to 9 V
	Release: 1.5 ms to 6 s (exponential release)
Output Section	
Controls	Volume: 0 to 100%
LED	MIDI: Gate signal
Sample & Hold Section	Date: 0.26 Hz to 28 Hz (can be clecked from outronal
Controls	Rate: 0.26 Hz to 28 Hz (can be clocked from extrenal source)
	Glide: 500 µs to 1 s
LED	Rate: 0.26 Hz to 28 Hz (can be clocked from extrenal
Slew Rate Limiter Section	source)
Siew Rate Limiter Section	Slew rate: 1 ms to 3 s
Controls	Portamento time: 0 to 10 s
Attenuator Section	
	Attenuator 1: $+4 dB$ to $-\infty$
Controls	Attenuator 2: 0 dB to -∞
Filter Section	
	Cutoff frequency: 10 Hz to 15 kHz
	Resonance: 0 to 10 (capable of self oscillation)
Controls	Modualtion depth: 0 to 100%
Controis	Envelope depth: 0 to 100%
	Noise: 0 to 100%
	VCA bias: 0 to 100%
	Filter mode, high pass, band pass and low pass
Switches	Filter key track: on/off
LED	Filter mode, high pass, band pass and low pass
LFO Section	
Controls	Shape: Sine, Triangle, Sawtooth, Square and Ramp
	Rate: 0 to 10 (0.01Hz to 10kHz)
Switches	Key sync: on/off
LED	Rate/Level indicator
	Shape: Sine, Triangle, Sawtooth, Square and Ramp.
Delay Section	Time 25 met (40
Control	Time: 25 ms to 640 ms
Controls	Repeats: 0 to 100%
Overdrive Section	Mix: 0 to 100%
overanive section	Drive: 0 to 11
Controls	Tone: 0 to 10
	Level: 0 dB to -∞
LED	Drive amount indicator

EN

I	E	Ν

LFO SHAPE

LFO TRIG

ATT 1 IN

ATT 1 CV

ATT 2 IN

SLEW IN

SUM1(A)

SUM1(B)

SUM2(A)

SUM2(B)

MULT (Multiple)

26 NEUTRON User M	lanual
Inputs (TS 3.5 mm)	
OSC 1	Control voltage: 1 V per octave
OSC 2	Control voltage: 1 V per octave
OSC 1&2	Control voltage: 1 V per octave
INVERT IN	inverts voltage
SHAPE 1	Control voltage: -5 V to +5 V
SHAPE 2	Control voltage: -5 V to +5 V
PULSE WIDTH 1	Control voltage: -5 V to +5 V
PULSE WIDTH 2	Control voltage: -5 V to +5 V
VCF IN	Signal input
FREQ MOD	Control voltage: -5 V to +5 V
RESONANCE	Control voltage: -5 V to +5 V
OVERDRIVE IN	Signal input
VCA IN	Signal input
VCA CV	Control voltage: -9 V to +9 V
DELAY IN	Signal input
DELAY TIME	Control voltage: -5 V to +5 V
E GATE 1	Control voltage: -5 V to +5 V (envelope triggers @ 1.5 V)
E GATE 2	Control voltage: -5 V to +5 V (envelope triggers @ 1.5 V)
SAMPLE & HOLD IN	Signal input
SAMPLE & HOLD CLOCK	Control voltage: -5 V to +5 V (S&H triggers @ 3 V)
LFO RATE	Control voltage: -5 V to +5 V

Control voltage: -5 V to +5 V

Control voltage: -5 V to +5 V

Signal input

Signal input

Signal or CV input

Signal input or CV input

Control voltage: -5 V to +5 V (S&H triggers @ 1.6 V)

Input Signal is duplicated on Mult 1 and Mult 2 outputs

outputs (TS 3.5 mm)	
OSC 1	Max. +14 dBu
OSC 2	Max. +14 dBu
OSC Mix	Max. +14 dBu
VCF 1	Max. +12 dBu
VCF 2	Max. +12 dBu
OVERDRIVE	Max. +18 dBu
VCA	Max. +18 dBu
OUTPUT	Max. +15 dBu
NOISE	Max. +18 dBu
ENV 1	Control voltage: 0 V to +9 V
ENV 2	Control voltage: 0 V to +9 V
INVERT	inverts signals up to +/-9.5 V
LFO	Control voltage: -5 V to +5 V
LFO UNI	Control voltage: 0 V to +5 V
SAMPLE & HOLD	Tracks input voltage upto a maxiumum of 9.5 V
MULT 1	Tracks input voltage upto a maxiumum of 9.5 V
MULT 2	Tracks input voltage upto a maxiumum of 9.5 V
MIDI GATE	Control voltage: 0 V to +3.3 V
ATT 1	Control voltage -9.5 V to +9.5 V (dependant on input signal)
ATT 2	Max output voltage dependant on input signal
SLEW	Control Voltage -9.5 V to +9.5 V (dependant on input signal)
SUM 1	Control Voltage -9.5 V to +9.5 V (dependant on input signals)
SUM 2	Control Voltage -9.5 V to +9.5 V (dependant on input signals)
ASSIGN	Control voltage: 0 V to +5 V
ower Requirements	
External power adaptor	12 V DC, 1000 mA (12 W)
Power consumption	7.5-9 W typical
nviormental	
Operating temperature range	5 °C to 40 °C (41 °F to 104 °F)
Physical	
Dimensions (H x W x D)	94 x 424 x 136 mm (3.7 x 16.7 x 5.4")
Weight	2.0 kg (4.4 lbs)
Shipping weight	3.0 kg (6.6 lbs)

13. Appendix A

MIDI Control Change (CC) functions

There are 2 MIDI CC functions that the Neutron supports:

- Modulation wheel or lever MIDI CC 0x01 (MSB) & MIDI CC 0x21 (LSB). This is routed to the assign out when selected as the assign out option
- Damper Pedal on/off (Sustain) MIDI CC 0x40.

System Exclusive Commands

Various parameters in the Neutron synthesizer can be changed using MIDI system exclusive (SysEx) commands. A MIDI utility such as the popular MIDI OX can be used to send the SysEx command data string to the Neutron by using the USB MIDI connection between a host computer and the Neutron.

Section 7.2 shows a typical procedure for sending a SysEx message to the Neutron, and it can be used to send any of the following SysEx messages. Below is a table of SysEx commands.

This table lists the SysEx commands supported by the Neutron.

Note that the general format of a Neutron SysEx message is:

Sysex Message Format:	F0 00 20 32 28 ID <> F7
START	<u>→</u> ▶↑ <u></u>
BEHRINGER ID	٧
NEUTRON ID	►
DEVICE ID*	
SysEx Message Payload —	>
END	

***note:** the device ID is not the same as MIDI channel. The valid range is 0-15 (default 0) or 7F (multicast to all Neutrons)

SysEx Command	Sysex	Notes
Set Global Setting	F0 00 20 32 28 ID 0A <> F7	See "Global Setting Command" table below
Restore Global Settings	F0 00 20 32 28 ID 0B F7	Restores defaults - does not erase calibration data
Calibration mode command	F0 00 20 32 28 ID 10 <> F7	See "Calibration Command" table below
Software Version request	F0 00 20 32 28 ID 73 F7	No notes
Software Version response	F0 00 20 32 28 ID 74 MM NN F7	MM - Comms protocol version
		NN - variable length ASCII string detailing the software version
Global Setting Update	F0 00 20 32 28 ID 5A MM <> F7	MM - Comms protocol version
Global Setting Command	Sysex	Notes
Set MIDI channel (*)	F0 00 20 32 28 ID 0A 00 MM F7	MM = 0-F> MIDI channel 1-16
		Note: using this command to set the MIDI channel will automatically disable the DIP switches on the back panel (which will persist across power cycles)
Set Key Priority	F0 00 20 32 28 ID 0A 01 MM F7	MM = 0-L0, 1-HI, 2-Last. Default:2-Last
Set Pitch Bend Range (*)	F0 00 20 32 28 ID 0A 03 MM F7	MM = 0-24 (semitones). Default:2
Set ASSIGN out	F0 00 20 32 28 ID 0A 04 MM F7	MM = 0-OSC 1 CV, 1-OSC 2 CV, 2-"Note On" velocity, 3-Modwheel, 4-Aftertouch. Default:0
Set Envelope retriggering	F0 00 20 32 28 ID 0A 05 MM F7	MM = 1-Enabled, 0-Disabled. Default:0-Disabled
Reset Min/Max MIDI notes	F0 00 20 32 28 ID 0A 06 MM F7	MM = not used
Set Polychain Mode	F0 00 20 32 28 ID 0A 08 MM F7	MM = 0-Disabled, 1-Enabled. Default:0
Set Device ID	F0 00 20 32 28 ID 0A 09 MM F7	MM = 0-F> MIDI ID 1-16. Default:0
Disable MIDI DIP switches	F0 00 20 32 28 ID 0A 0A MM F7	MM = 0-Enabled, 1-Disabled. Default:0-Enabled
Set Mute Out-Of-Range notes	F0 00 20 32 28 ID 0A 0B MM F7	MM = 1-nute, 0-not mute. Default:0-not mute
Set Min MIDI note	F0 00 20 32 28 ID 0A 0C MM F7	MM = MIDI note number. Default:24
Set Max MIDI note	F0 00 20 32 28 ID 0A 0D MM F7	MM = MIDI note number. Default:96
Set OSC Sync	F0 00 20 32 28 ID 0A 0E MM F7	MM = 0-Enabled, 1-Disabled. Default:0-Enabled
Set Paraphonic Mode	F0 00 20 32 28 ID 0A 0F MM F7	MM = 0-Monophonic, 1-Paraphonic. Default:0-Monophonic
Set VCF mode	F0 00 20 32 28 ID 0A 10 MM F7	MM = 0-HP, 1-BP, 2-LP
Set VCF keytrack	F0 00 20 32 28 ID 0A 11 MM F7	MM = 0-Disabled, 1-Enabled. Default:0
Set VCF mod src	F0 00 20 32 28 ID 0A 12 MM F7	MM = 0-Disabled, 1-aftertouch, 2-modwheel, 3-velocity
Set VCF mod depth	F0 00 20 32 28 ID 0A 14 MM F7	MM = 0-3F where 0 is the minimum & $3F(63dec)$ is the maximum (100%)
Set OSC 1 shape blend	F0 00 20 32 28 ID 0A 20 MM F7	MM = 1-No blend, 0-Blend. Default:0-Blend
Set OSC 2 shape blend	F0 00 20 32 28 ID 0A 21 MM F7	MM = 1-No blend, 0-Blend. Default:0-Blend
Set OSC 1 tune pot bypass	F0 00 20 32 28 ID 0A 22 MM F7	MM = 0-Not bypassed, 1-Bypassed. Default:0-Not bypassed
Set OSC 2 tune pot bypass	F0 00 20 32 28 ID 0A 23 MM F7	MM = 0-Not bypassed, 1-Bypassed. Default:0-Not bypassed

Global Setting Command	Sysex	Notes							
Set OSC 1 autoglide	F0 00 20 32 28 ID 0A 24 MM F7	MM = 0-24 Range is -12->+12 so 12 is no autoglide.							
		Default:12-No autoglide							
Set OSC 2 autoglide	F0 00 20 32 28 ID 0A 25 MM F7	Default:12-No autoglide							
Set OSC 1 range	F0 00 20 32 28 ID 0A 26 MM F7	MM = 0[32'], 1[16'], 2[8'] & 3[+/- 10 oct mode]							
Set OSC 2 range	F0 00 20 32 28 ID 0A 27 MM F7	MM = 0[32'], 1[16'], 2[8'] & 3[+/- 10 oct mode]							
Set OSC key split (*)	F0 00 20 32 28 ID 0A 28 MM F7	MM = 0, 24-88. Key split note#, 0-off. Default:0-off. NB key split note# is the start of OSC2 range							
Set LFO shape blend	F0 00 20 32 28 ID 0A 30 MM F7	MM = 1-No blend, 0-Blend. Default:0-Blend							
Set LFO One shot mode	F0 00 20 32 28 ID 0A 31 MM F7	MM = 1-Enabled, 0-Disabled. Default:0-Disabled							
Set LFO rate key track key (*)	F0 00 20 32 28 ID 0A 32 MM F7	MM = LFO rate root MIDI note number 12-108. 0 – Disabled							
Set LFO depth	F0 00 20 32 28 ID 0A 34 MM F7	MM = 0-20%, 1-40%, 2-60%, 3-80%, 4-100%. Default:4-100%							
Set LFO ignore MIDI CLK sync	F0 00 20 32 28 ID 0A 35 MM F7	MM = 0-CLK sync, 1-ignore CLK sync. Default:0-CLK sync							
Set LFO key sync	F0 00 20 32 28 ID 0A 37 MM F7	MM = 0-Enabled, 1-Disabled. Default:0-Enabled							
Set LFO Shape order (2)	F0 00 20 32 28 ID 0A 38 MM F7	MM = LFO Slot index: =04 NN = LFO shape value: = 04							
Restore LFO Shape order	F0 00 20 32 28 ID 0A 39 MM F7	MM - Not used							
Set LFO Shape phase	F0 00 20 32 28 ID 0A 3A MM NN F7	MM = LFO Shape index: =0.4							
		NN = LFO phase value: = 07 - in eighths of 2*PI (or 45 degrees)							
Set LFO retrigger	F0 00 20 32 28 ID 0A 3B MM F7	MM = 0-overlapping notes will not retrigger the LFO, 1-overlapping notes will retrigger the LFO.							
Calibration Command	Sysex	Notes							
ASSIGN out calibration 1V	F0 00 20 32 28 ID 10 20 F7	Enter calibration mode 1V							
ASSIGN out calibration 4V	F0 00 20 32 28 ID 10 21 F7	Enter calibration mode 4V							
ASSIGN out calibration +V	F0 00 20 32 28 ID 10 23 <n> F7</n>	Increase voltage. <n> is an optional value (2-7F) which will increase the step voltage change linearly. If omitted a value of 1 is used</n>							
ASSIGN out calibration -V	F0 00 20 32 28 ID 10 22 <n> F7</n>	Decrease voltage. <n> is an optional value (2-7F) which will increase the step voltage change linearly. If omitted a value of 1 is used</n>							
ASSIGN out save & exit	F0 00 20 32 28 ID 10 24 F7	Stores calibration data & exits							

Decimal to Hex Table

The SysEx Message Payload works in Hex format. Use the Decimal to Hex Table to find the Hex value you require. All SysEx messages in the above table that have a (*) will require you to turn the Midi note number into a hex number using the table below.

Dec	Hex)ec	Hex	Dec	Hex										
0	0	32	20	64	40	96	60	16	10	48	30	80	50	112	70
1	1	33	21	65	41	97	61	17	11	49	31	81	51	113	71
2	2	34	22	66	42	98	62	18	12	50	32	82	52	114	72
3	3	35	23	67	43	99	63	19	13	51	33	83	53	115	73
4	4	36	24	68	44	100	64	20	14	52	34	84	54	116	74
5	5	37	25	69	45	101	65	21	15	53	35	85	55	117	75
6	6	38	26	70	46	102	66	22	16	54	36	86	56	118	76
7	7	39	27	71	47	103	67	23	17	55	37	87	57	119	77
8	8	40	28	72	48	104	68	24	18	56	38	88	58	120	78
9	9	41	29	73	49	105	69	25	19	57	39	89	59	121	79
10	A	42	2A	74	4A	106	6A	26	1A	58	3A	90	5A	122	7A
11	В	43	2B	75	4B	107	6B	27	1B	59	3B	91	5B	123	7B
12	C	44	2C	76	4C	108	6C	28	1C	60	3C	92	5C	124	7C
13	D	45	2D	77	4D	109	6D	29	1D	61	3D	93	5D	125	7D
14	E	46	2E	78	4E	110	6E	30	1E	62	3E	94	5E	126	7E
15	F	47	2F	79	4F	111	6F	31	1F	63	3F	95	5F	127	7F

EN

15. Appendix B Neutron App

The Neutron app is designed to control the Neutron's complex features in an easy to use format.

To use the app, simply download the latest version from the www.musictribe.com website and follow the installation instructions. Any Neutron will need to be updated to version V2.0.0 or higher in order for the Neutron to be recognised in the App.

Once your Mac or PC is connected via USB, open the app, set-up and enjoy easy control of many parameters of the Neutron Synthesizer as described earlier in this manual.

To use the Neutron app:

- 1. Connect USB out of your computer to the Neutron USB input.
- 2. Power your Neutron and Computer on.
- 3. Open the Neutron app.
- 4. Select 'Neutron' in the MIDI device list for IN and OUT. It is possible to have multiple Neutrons connected with the same device ID. The input and output will be in corresponding positions in the list if you have multiple devices and have not change the device ID via SysEx.
- 5. The app will populate with now show the current settings of the connected Neutron.

The USB icon in the top right of the App has 3 states, clicking on the icon reveals more detail.

1 - No connection grey out USB.

2 - Successful connection. Click for software version.

3 – Continual double blink will be displayed for out dated firmware and shows the connected Neutron needs updating. Note this function will only work currently with a Neutron using firmware V2.0.0 or higher. If you are using an older firmware, the message will display as "Neutron not connected".

sto <	Update Neutron to V2.0.0 or later
	(ANALOG SYNTHESIZER)
	behringer
	Ŭ

Help information

Right clicking over a function in the Neutron app software will give you a description of the function.

16. Glossary

EN

NEUTRON GLOSSARY

This glossary provides an explanation of useful symbols, terms and abbreviations.

32'/16'/8': Used to describe the range of an oscillator, this term originates from pipe organs. for example, an 8' pipe is one octave higher than an 16' pipe.

ADSR: Attack, Decay, Sustain and Release, an envelope with four stages.

Aftertouch: Aftertouch is MIDI data sent when pressure is applied to a keyboard after the key has been struck, and while it is being held down or sustained.

Attack Time: The first stage of an ADSR envelope, used to control the initial part of a sound. Specified as the duration of time for an envelope to reach the maximum level after it has been triggered on by a key press or gate signal.

Attenuate: To reduce the level of a signal.

Autoglide: Played as a smooth and linear increase or decrease in pitch rather than a semitone step-change. The number of semitones that the start of the note 'glides through' for the selected note can be changed and be + or -.

Band Pass Filter (BPF): A filter that passes frequencies within a certain range and rejects (attenuates) frequencies outside that range.

Bipolar: a signal that includes positive and negative values.

Cent: Unit of measurement for pitch tuning. There are one hundred cents in a semitone.

Control Voltage (CV): A voltage signal used to control a parameter. Was common on synthesizers before MIDI and is now found mostly on modular synthesizers.

Cut-Off Frequency: The frequency which the filter is set to. Beyond this frequency the sound is cut depending on the type of filter used. See LPF, BPF and HPF.

dBu: A unit of measurement of sound used in professional audio.

DC Offset: A DC voltage which is added to an AC waveform.

Decay Time: The second stage of an ADSR envelope. Specified as the duration of time for an envelope to reach the sustain level after the maximum level has been reached during the attack stage.

Digital Audio Workstation (DAW): A computer-based recording system. More commonly used to describe the software package used to record, process and mix.

Distortion: An effect which adds harmonic content to a signal.

Drive: Provide a gain boost to produce soft clipping.

Effect: One of a number of audio processes that can be applied to a signal to modify it, such as reverb, flanging, phasing, delay etc.

Envelope Generator (EG): An envelope signal which can be adjusted to a specific shape in order to control the way a sound behaves over time.

Feedback: A loop created between an audio input and an audio output of an audio circuit, system or processing block.

Filter: A device that attenuates certain frequencies while letting other frequencies through. Using a filter to reduce harmonics, changes the timbre or color of the sound.

Frequency Modulation (FM): Using one frequency to modulate another frequency's pitch. When the modulation source is in the audio range, it can be perceived as a change in the timbre or color of the sound. FM can be used to create a wide range of rich and complex sounds and is often described as having a clear and distinctive timbre.

Gain: The amount of signal level increase provided by an amplifier stage.

Gate (Synthesizer): A signal used to trigger an event, such as a note or an envelope.

Harmonics: A series of integer-related sine waves at varying levels creating different timbres. Waveforms (other than a pure sinusoidal) generate various harmonics which help define the character of the sound.

High Pass Filter (LPF): A filter that attenuates lower frequencies below the filter cutoff point, leaving the higher frequencies unaffected.

Invert: To change it to its opposite, e.g. change a positive value becomes negative etc.

Keyboard Tracking: Allows the control signal from received midi notes to adjust another parameter. The Neutron uses keyboard tracking to move the filter cut off frequency relative to the played note.

Kilohertz (kHz): A unit of frequency equal to one thousand cycles of a wave per second.

Level: Used to describe the magnitude of a sound, often relative to an arbitrary reference.

Line Level: A nominal operating level used by audio equipment.

Low Frequency Oscillator (LFO): An oscillator that commonly runs at a very low speed and is used to modulate another parameter.

MIDI (Musical Instrument Digital Interface): A technical standard that describes a protocol, digital interface and connectors and allows a wide variety of electronic musical instruments, computers and other related hardware/software devices to connect and communicate.

MIDI Clock: A clock signal which is broadcast over MIDI to ensure that devices are synchronized. Also known as MIDI Beat Clock or MIDI Timing Clock.

MIDI Message: Data or information transmitted from one MIDI device to another.

MIDI Gate: The MIDI Gate typically controls the note on-off.

Mix: The balance of level between one signal and another.

Modulation: The process of controlling one or more properties (destinations) of a signal using another signal (source).

Modulation Wheel (Mod Wheel): A wheel located to the left of a keyboard that allows you to change specified parameters in real-time.

Monitors: Studio quality loudspeakers, providing an accurate representation of the audio signals.

Mono: Signal channel audio.

Monophonic: Only one note can be played at any given time, as there is only a single voice.

Mute: Function that allows a signal to be silenced.

N/A: An electronic device which generates a periodic signal .

Noise: A circuit that produces white noise.

Note-Priority: Determines which note is played when more notes are held simultaneously than the number of available voices (often: low/high/last).

Octave or Oct: Unit of measurement for pitch. Every time the frequency of a waveform doubles, the pitch increases by one octave.

Oscillator: An electronic device which generates a periodic signal used to form the basis of a synthesizer program.

Output: The signal sent out by a device or process. Also used to describe the physical socket where a signal leaves a device.

Frequency: Measured in Hz.

Overdrive: To push to excess or drive too hard.

Parameter: A setting whose value can be changed.

Parametric EQ: A type of EQ that allows all of the parameters of equalization to be changed, including center frequency, boost/cut in gain and bandwidth.

Paraphonic: Is the use of two oscillators independently pitched when more than one MIDI note is played.

Patch: The cables used on modular synthesizers (or synthesizers with modular compatibility) to connect devices together. Patch cables can carry audio, gate or control voltage signals.

Phase: A measurement (in degrees) of the time difference between two waveforms, or between a single waveform and a reference point.

Pitch Bend / Pitch Bend Wheel: Controlling the pitch of a note after it has been played.

Polyphonic: Capable of playing more than one note at once.

Polyphony: The number of notes a polyphonic synthesizer can play simultaneously.

Portamento: An adjustable performance effect that glides or bends the pitch from one note to the next.

Poly-Chaining: A way to connect multiple monophonic synths to play together to create a polyphonic sound.

Power Supply Unit (PSU): The component in a system which is responsible for supplying and managing power.

Psychoacoustics: The study of the perception of sound, that is, how we listen, our psychological responses, and the physiological effects on the human nervous system.

Pulse Wave: Similar to a square wave, but without symmetry. Also known as a "Rectangle Wave."

Pulse Width Modulation (PWM): Modulation of the pulse width (the duty cycle of a pulse wave measured as a percentage). A pulse width of 50% has equal positive and negative sections and is considered a square wave.

Rate: The speed at which a particular device is operating.

Release Time: The fourth and final stage of an ADSR envelope. Specified as the duration of time for an envelope to reach zero after the played key is released.

Resonance (Reso): The emphasis/boost of frequencies around the cut-off frequency.

Reverb: An effect where the ambience of a physical space is simulated.

s: Symbol for "second," a unit of time.

Sample & Hold (S&H): A circuit or function in synthesizers that enables the instantaneous value (voltage) of a waveform to be captured and continues to output that value until the next sample is taken.

Sawtooth: A waveform that combines an instantaneous rise or fall, followed by a gradual linear incline or decline. The name comes from the waveform's similarity to the teeth of a saw.

Semitone: A chromatic half-step. There are twelve semitones in an octave.

Self-oscillation: Occurs when the resonance of a filter is increased to the point where it will begin to generate a sine wave independently of any input.

Signal flow: The path of a signal from one module (or component of a system) to another.

Sinusoidal / Sine Wave: Mathematical description of a smooth waveform that contains only the fundamental frequency and has no additional harmonics. The shape resembles the letter "S" rotated 90 degrees.

Slew Rate: The rate of change of a voltage or control signal.

Soft Clipping: is a technique for adding warm harmonic distortion to your audio.

Square Wave: A symmetrical waveform that combines an instantaneous rise or fall, followed by a positive or negative steady state. The name comes from the waveform's similarity to a square.

Sum: A way to combine signals

Sustain Level: The third stage of an ADSR envelope. Specified as "the level an envelope will return to, after the decay stage". The envelope will remain at the sustain level until the key is released.

Synchronization (Sync): Coordination of timing between devices.

Sync (Tempo): A function where a cyclical event such as an LFO is synchronized to a tempo value until the played key is held.

Sync (Oscillator): A function where one oscillator is synchronized to another. The waveform of the slave oscillator is reset whenever the waveform of the master oscillator restarts.

Sync (Key): A function where an event is synchronized to the pressing of a key.

Threshold: This is the level that must be passed before the processing is engaged.

Tone Control: Used to adjust the volumes of various frequency ranges for creative or corrective purposes.

Triggering: Activation of a function, such as the start of a note, envelope, or LFO.

Tune / Tuning: The process of adjusting the root pitch of the instrument to a specific reference frequency.

Unipolar: A signal having a single polarity, positive or negative.

Unison: Two or more voices that are playing together at roughly the same pitch.

Universal Serial Bus (USB): A "plug and play" interface that provides a fast connection between a computer and peripherals.

VCA Bias: Controls the minimum amplification present.

Volt (V): A unit of electrical potential differential.

Voltage Controlled Amplifier (VCA): An amplifier whose resultant magnitude is controlled by a voltage.

Voltage Controlled Filter (VCF): A filter whose cut-off frequency can be controlled by a voltage.

Voltage Controlled Oscillator (VCO): An oscillator whose cut-off frequency can be controlled by a voltage.

Voice: A physical embodiment of a complete set of OSC, Envelopes, LFOs and VCF which can play a single note.

Waveform: A repeating signal typically created by an oscillator. A waveform can also be random in the case of noise.

White Noise: A sound that contains every frequency within the range of human hearing (generally from 20 Hz to 20 kHz) in equal amounts.

Width: Sets the pulse width of oscillator square / tone mod waveforms.

EN

Patch Number

Neutron Patch Sheet

FEDERAL COMMUNICATIONS COMMISSION COMPLIANCE INFORMATION

Responsible Party Name:

Address:

Music Tribe Commercial NV Inc. 5270 Procyon Street Las Vegas, NV 89118 USA

Phone Number:

+1 702 800 8290

NEUTRON

complies with the FCC rules as mentioned in the following paragraph:

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- Consult the dealer or an experienced radio/TV technician for help

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions:

(1) this device may not cause harmful interference, and

(2) this device must accept any interference received, including interference that may cause undesired operation.

Important information:

Changes or modifications to the equipment not expressly approved by Music Tribe can void the user's authority to use the equipment.

We Hear You

